If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+38x-98=0
a = 4; b = 38; c = -98;
Δ = b2-4ac
Δ = 382-4·4·(-98)
Δ = 3012
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3012}=\sqrt{4*753}=\sqrt{4}*\sqrt{753}=2\sqrt{753}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{753}}{2*4}=\frac{-38-2\sqrt{753}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{753}}{2*4}=\frac{-38+2\sqrt{753}}{8} $
| P=1+10.99(n-4) | | 5t=390,625 | | 6x/7-13=29/21 | | x+x+24=52 | | 2.50+0.15x=1.00+0.20x | | 6x/7-13=18/21 | | -9g-10=-10 | | 3x+3(2x+6)=18 | | X=12y=-13 | | 25=(x+4)(x-3) | | X+2+3x-3=0 | | X=8y=-5 | | 133=7b+7(b+7) | | (t+1)²-(t-8)²=45 | | -5+4=-6t | | x/9-7=16 | | 5(x+4)=5(x-3) | | ⅝o-1=⅔+2o | | -7g+15=1 | | -11x+5=-127 | | d/4-6=9 | | -8x-11=-115 | | -2x-9=-4x+27 | | 5/8o-1=⅔+2o | | -5x-5(6x+13)=5 | | 4/m=32/56 | | v+1+5v=7 | | -1.2u-1=0.5u-0.4 | | -8m+1=19+4m | | 3=-12^(-1.5x) | | -8=-4b-4b | | 2x+5+4x-20=0 |